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Premixed turbulent combustion in the flamelet regime is analysed on the basis of a 
field equation. This equation describes the instantaneous flame contour as an 
isoscalar surface of the scalar field G(x , t ) .  The field equation contains the laminar 
burning velocity sL as velocity scale and its extension includes the effect of flame 
stretch involving the Markstein length 9 as a characteristic lengthscale of the order 
of the flame thickness. The scalar G(x, t )  plays a similar role for premixed flamelet 
combustion as the mixture fraction Z(x, t )  in the theory of non-premixed flamelet 
combustion. 

Equations for the mean B and variance c'2 are derived. Additional closure 
problems arise for the mean source terms in these equations. In order to understand 
the nature of these terms an ensemble of premixed flamelets with arbitrary initial 
conditions in constant-density homogeneous isotropic turbulence is considered. An 
equation for the two-point correlation G(x, t )  G'(x + r ,  t )  is derived. When this 
equation is transformed into spectral space, closure approximations based on the 
assumption of locality and on dimensional analysis are introduced. This leads to a 
linear equation for the scalar spectrum function f(k, t ) ,  which can be solved 
analytically. The solution T(k, t )  is analysed by assuming a small-wavenumber cutoff 
at  k, = I;1, where I ,  is the integral lengthscale of turbulence. There exists a k-8- 
spectrum between I ,  and L,, where L, is the Gibson scale. At this scale turbulent 
fluctuations of the scalar field G(x, t )  are kinematically restored by the smoothing 
effect of laminar flame propagation. A quantity called kinematic restoration w is 
introduced, which plays a role similar to the scalar dissipation x for diffusive scalars. 

By calculating the appropriate moments of f(k, t ) ,  an algebraic relation between 
w ,  G'(x, t ) ' ,  the integral lengthscale 1, and the viscous dissipation E is derived. Further- 
more, the scalar dissipation xu, based on the Markstein diffusivity gu = s L 9 ,  
and the scalar-strain co-variance Z9 are related to w .  Dimensional analysis, 
again, leads to a closure of the main source term in the equation for the mean scalar 
0. For the case of plane normal and oblique turbulent flames the turbulent burning 
velocity sT and the flame shape is calculated. In the absence of flame stretch the 
linear relation sT - u' is recovered. The flame brush thickness is of the order of the 
integral lengthscale. In thc case of a V-shaped flame its increase with downstream 
position is calculated. 

1. Introduction 
Ever since Damkohler (1940) defined the turbulent burning velocity sT in analogy 

with the laminar burning velocity sL as the velocity of a turbulent premixed flame 
relative to the mean flow, the question has remained of how sT depends on the 
turbulence intensity u', the laminar burning velocity sL and on turbulent and 
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laminar lengthscales. If the flame structure is assumed to be a surface of discontinuity 
with zero thickness, then there exists no reference length and dimensional arguments 
suggest that the turbulent lengthscale should not enter into the problem. Damkohler 
has considered this limit and has equated the mass flux m of unburned gas through 
the instantaneous wrinkled flame surface area FT to the mass flux through the cross- 
sectional area F 

( 1 . 1 )  

where pu is the density of the unburnt gas. He argued that the flow through the 
instantaneous flame surface FT proceeds with the laminar burning velocity sL, while 
that through the cross-sectional area has the turbulent burning velocity sT. Using the 
geometrical analogy with a Bunsen flame, Damkohler assumed that the area increase 
of the wrinkled flame surface area relative to the cross-sectional area is proportional 
to the increase u’ of flow velocity relative to the laminar burning velocity 

m = pUsLFT = p u s T F ,  

Finally, the velocity increase was assumed proportional to  the turbulence intensity 
u‘. Combining (1.1) and (1.2) leads to 

U’ 

S L  SL 
s T =  I + - .  

ST - u‘, 
In the limit uf B sL one obtains 

which is Damkohler’s result. It states that the turbulent burning velocity should 
only depend on the turbulence intensity and should be independent of laminar 
flame properties like sL or the laminar flame thickness I , .  Since these depend on 
laminar transport properties and chemistry, neither should influence the process of 
turbulent flame propagation. This is inconsistent with experimental data, which 
show a dependence of sT/sL on fuel composition, turbulent and laminar lengthscales 
and a nonlinear dependence on the ratio u’/sL. Recent compilations of literature data 
will be referenced below. 

Theoretical approaches to resolve the problem of turbulent flame propagation are 
very often based on closure assumptions for the chemical source term in the balance 
equations of the mean scalar quantities such as temperature and concentrations. The 
most prominent of these is the eddy-breakup model (Mason & Spalding 1973). 
Modifications of this model were proposed by Magnussen & Hjertager (1977), Borghi 
& Dutoya (1979), Bray (1979), Bray, Libby & Moss (1984), and recently by Bray, 
Champion & Libby (1988), Gouldin, Bray & Chen (1989), Cant & Bray (1989), Borghi 
(1990), and Catlin & Lindstedt (1991). All these models recover Damkohler’s result 
to leading order, and some of them introduce empirical corrections accounting for 
flame stretch. 

Differently from non-premixed combustion, a consistent flamelet formulation is 
still missing for premixed combustion. In  non-premixed combustion the problem 
could be formulated (Peters 1984) by separately considering an equation for 
the mixture fraction 2, which fixes the instantaneous location of the flamelets a t  
Z(x, t )  = Zst, and flamelet equations in terms of 2 as independent variable. Only the 
latter equations contain chemical source terms and molecular diffusion. A turbulent 
timescale is imposed on the flamelets by the outer field and is parameterized by the 
local value of the scalar dissipation xst. A similar formulation for premixed 



A spectral closure for premixed turbulent combustion 613 

Y t 

- 
X 

FIGURE 1.  A schematic representation of the flame front as an isoscalar surface of 
the scalar G(x, t ) .  

combustion should at first contain an analogous scalar equation, which fixes the 
location of the flamelets. Such an equation for the scalar G(x, t )  whose level surfaces 
G(x, t )  = Go represent the flame surface, is the equation derived by Williams (1985) 

where (psJ is the constant-mass burning velocity through a laminar, plane steady 
flame. The properties of this equation have been investigated in a number of papers. 
Kerstein, Ashurst & Williams (1988) and Ashurst (1990) have solved it numerically 
in two- and three-dimensional turbulent flow fields, while Yakhot ( 1 9 8 8 ~ )  and 
Sivashinsky (1989) have applied renormalization group analysis to it. Yakhot 
(1988 b)  has analysed the scaling properties of (1  -5) and has argued that it would lead 
to a linear dependence of the turbulent on the laminar burning velocity. Recently 
Vassilicos (1990) has investigated the behaviour of solutions for small times. 

For the physical interpretations below it should be interesting to show that (1.5) 
may be derived from the local kinematic relation between the propagation velocity 
vp of a flame front, the flow velocity v and the laminar burning velocity sL 

vp.n = v.n+sL. 

The condition for the flame front 
G(x,t) = Go 

divides the flow field into two regions where G > Go is the region of burnt gas and 
G < Go that of the unburnt mixture (cf. figure 1).  The normal vector on the surface 
towards the unburnt is then given by 

The local propagation velocity vp of the front is defined by 
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If one differentiates (1 .7)  with respect to t ,  

aG 
- + V G e l  = o ,  

at G-Go at 

one obtains with (1.8) and (1.9) 

= v,-nlVGI. 
aG - 
at 

Introducing (1.6) and (1.8) into ( 1 . 1 1 )  one obtains the field equation 

aG 
- + v - V G  = s,lVGI. 
at 

(1.10) 

(1.11) 

(1.12) 

This is the constant-density version of (1.5). If the burning velocity sL in (1.6) is 
defined with respect to the unburnt mixture, then the flow velocity v in (1.6) and 
(1.12) is also defined as the conditioned velocity field in the unburnt mixture ahead 
of the flame. Comparison of (1.12) with (1.5) shows that the density p in (1.5) should 
then be equal to pu. On the other hand, if sL is the burning velocity with respect to 
the burnt gas, then v and p in (1.5) should be the velocity and the density in the burnt 
gas. 

Since (1.5) represents a balance of velocities only, it  contains no lengthscale. The 
characteristic lengthscale for flame response is the Markstein length 9 introduced by 
Pelce & Clavin (1982), Clavin (1985). It is proportional to the flame thickness. For the 
case of a one-step large-activation-energy reaction and a constant thermal 
conductivity A ,  dynamic viscosity p and heat capacity c p ,  the ratio of 9’ to the flame 
thickness 1, is 

(1.13) 

This expression was first derived by Clavin & Williams (1982). Here y = ( Tb - T,)/T,, 
where Tb and T, are the temperatures in the burnt and the unburnt gas, respectively; 
P = E(T,-T,)/RTE is the Zeldovich number, where E is the activation energy and R 
the universal gas constant; and Le = A/pcpD is the Lewis number of the reactant, 
assumed constant, where D is the molecular diffusivity. The flame thickness is 
1, = A / ( p c p s L ) .  Equation (1.13) was derived with respect to the unburnt mixture. 
Clavin (1985) shows that with respect to the burnt gas one obtains a similar but 
different expression where the factor (1  - y) in the nominator of the second term is 
missing. This increases the influence of Lewis number effects since the term (1 - y) is 
equal to Tu/Tb, which is typically between 0.15 and 0.2 in technical flames. It should 
be noted that the Markstein length changes if more than one reaction is considered. 
Experimental values for the ratio in (1.13) range typically from 9 / l F  = 2 to 
Y/1, = 6 (Searby & Quinard 1990). 

The Markstein length is introduced into (1.12) by using the burning velocity of a 
flame submitted to stretch. Flame stretch consists of two contributions : one due to 
flame curvature and another due to flow divergence. The burning velocity sL is 
modified by these two effects as 

sL = s O , - s O , 9 K + 9 n - V v - n .  (1.14) 

Here st is the burning velocity for an unstretched flame. The flame curvature K is 
defined 

(1.15 a)  
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which may be transformed as 

( 1.15 b)  

The second term in the numerator may be combined with the last term in (1.14) 
which, when multiplied with IVGI, leads to 

V2G VIVGI-VQ - V2G-n-VlVGl 
K = -- -- 

lVGl + IVGI2 IVGl 

Here (1.12) has been used with sL = SO, and the substantial derivative is defined as 

D G  aG 
Dt at 
- = -+v .VG.  (1.17) 

Therefore, introducing the burning velocity correction due to stretch into (1.12) leads 
to the following equation for the scalar G(x, t )  : 

= &[VGl+ .99 V2G - 2' [F] . 
Dt Y+O 

(1.18) 

Here, = s t  9 is the corresponding Markstein diffusivity. Equation (1.18) 
represents a first-order expansion for 2' + 0 of (1.12) and has been derived by a two- 
scale asymptotic analysis by Peters & Keller (1992). It could also have been 
anticipated from equation (6.1) in Matalon & Matkowsky (1982) or equation (23) in 
Clavin & Joulin (1983), written in isotropic and dimensional form. It is a so-called 
Hamilton-Jacobi equation with a parabolic second order differential operator 
coming from the curvature term. 

Another lengthscale that will be important for the subsequent analysis is the 
Gibson length (Peters 1986) 

L , = E )  (1.19) 

where c is the turbulent dissipation. It represents a lower cutoff scale for the 
interaction of turbulent eddies with a flame front. While eddies much larger than L,  
convect the flame surface as if it was a passive surface, much smaller eddies cannot 
kinematically counterbalance the flame propagation since their velocity difference is 
much smaller than sL. The physical processes that occur at  the Gibson length will 
play a fundamental role in the analysis that follows. 

2. Equations for the mean and the variance of the scalar G 
We start from (1.18), which can be written, without loss of generality, for a 

Cartesian coordinate system, where Greek subscripts appearing twice indicate a 
summation from 1 to 3. The differential operators may be written as 



616 N .  Peters 

and in the following, the modulus of G will be denoted by 

The last term in (1.18) may be expressed in terms of spatial gradients only. By 
differentiating the leading-order equation (1.12) with sL replaced by s t  with respect 
to x,, defining up = tIG/ax, and multiplying the equation for U, by 2u, one obtains 

With u2 = c$ one obtains 

Therefore (1.18) may be written as 

The isoscalar surface G(x,t) = Go, where Go is an arbitrary constant, describes the 
instantaneous flame contour. The scalar difference G - Go may be interpreted as the 
distance from the flame surface. For dimensional analysis, however, the properties of 
the scalar equation must be treated as those of any scalar, the temperature for 
instance, and the dimension of G will be denoted by [g]. 

Equation (2.5) may be treated as any scalar equation in a turbulent flow field. In  
particular, G and v, may be split into a mean and a fluctuation 

G = G+G’, urn = %+v:. (2.6) 

The equation for the mean is 

In  the following we will assume that so, and 9 are defined with respect to the unburnt 
mixture. Then v, is the conditioned velocity field ahead of the flame. The equation 
for the variance is obtained by multiplying the equation for the fluctuation G’, which 
is obtained by subtracting (2.7) from (2.5), by 2G and averaging: 

Here the first term on the right-hand side denotes the turbulent transport of the 
scalar variance and the second its production by turbulent fluctuations. The last 
three terms are specific for the present problem and are defined as follows. 

Kinematic restoration : 
- 

o = - 2 4  G’a’. (2.9) 

This term represents the co-variance of the scalar fluctuation with the source term 
in (1.18). This co-variance is expected to be negative. This may be illustrated by 
arguments similar to those of Damkohler (1940). Let us consider a two-dimensional 
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steady oblique flame with a constant velocity u in the x direction, where u > s:. For 
this configuration the solution of (1.18) in the limit L? = 0 is 

(2.10) 

with symmetry with respect to the x-axis and the flame tip lying at x = xo, y = 0. 
Superimposing on this configuration a velocity fluctuation, one realizes that a small 
velocity increase u' would decrease the flame angle with respect to the x-axis thereby 
introducing a positive fluctuation a'. At the same time the flame front is convected 
downstream which induces a negative fluctuation G .  The opposite is true for a small 
velocity decrease. - Therefore the product G ' d  is negative in both cases and the 
correlation Ga' is also likely to be negative. The kinematic restoration accounts for 
the smoothing of the scalar field and thereby of the flame surface by laminar flame 
propagation. Scalar fluctuations produced by turbulence are restored by this 
kinematic effect, which is most effective at the Gibson lengthscale L,. The physical 
interpretation of this effect has been given by Peters (1986). The kinematic 
restoration will play a central role in the analysis that follows. 

Scalar dissipation : 

(2.11) 

This term incorporates the co-variance between G' and all diffusive terms in (1.18). 
These terms account for the curvature effect, which smooths the cusps formed when 
two parts of the flame front intersect. For constant density i t  can easily be 
decomposed into a negative diffusion term, a positive scalar dissipation term and 
additional nonlinear contributions. It is assumed that the scalar dissipation term is 
dominant and the entire term is called scalar dissipation for convenience. It will be 
shown to be most effective at a Corrsin lengthscale 

L, = ( 9 $ / 8 ) f  = LbL?] (2.12) 

based on the Markstein diffusivity By. 

Scalar-strain co-variance : 

(2.13) 

This term accounts for the co-variance between G' and the stretch term due to flow 
divergence in (1.18). As the straining motion of the turbulent flow field acts on the 
flame surface preferentially by stretching it (rather than by compressing it), this 
term smooths the flame front further and thereby reduces the remaining scalar 
fluctuations. It therefore is expected to be positive and the co-variance negative. It 
is most effective a t  the Markstein length L? as will be shown below. 

3. Two-point scalar correlations and their spectrum function 
Closure of the problem is achieved if the unknown source terms in (2.7) and (2.8) 

can be expressed as functions of G, G 2  and parameters representing the turbulent 
flow field. In order to obtain some guidance for the modelling of these terms, we 
consider a scalar field G(x, t )  in constant-density homogeneous isotropic turbulence. 

_ -  
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This corresponds to an ensemble of premixed flamelets with arbitrary initial 
conditions travelling from all directions into a given spatial domain. Since 
translational invariance of a premixed flame implies an arbitrary starting time, the 
choice of Go then determines the average time interval of propagation for flamelets 
to arrive in the spatial domain considered. We shall consider the spatial correlation 
between scalar fluctuations G‘(x, t )  a t  point x and G ( x + r ,  t )  at point x + r .  Because 
of isotropy it is obvious that the correlation must simply be a scalar function of 
r = Ir(, the distance between the two points. We define 

g 2 ( r ,  t )  = G’(x, t )  G(x  + r ,  t ) .  (3.1) 

An equation for g2 can be derived by using standard techniques in homogeneous 
turbulence (Batchelor 1953) 

ag2 
at ’‘a 

aw;(x + r ,  t )  G (  x, t )  G(x + r, t )  -+2  + 2 ~ 0 , s ~  + 2gYS2 + 2YS, = 0, (3.2) 

where S , ( r , t ) =  - G ‘ ( x + r , t ) v ‘ ( x , t )  

a2G(x, t )  a In v ( x ,  t )  S,(r,t) = - G ‘ ( x + r , t )  - 
ax: ax, aXp (3.3) 

In (3.2), because of homogeneity, all spatial gradients a/axa of averaged quantities 
have been neglected and only the gradients in correlation space have been 
retained. Equation (3.2) is the analogue of Corrsin’s (1951) equation for a diffusive 
scalar. I n  particular, symmetry conditions for the triple correlations 

V: G’(x, t )  G’( x + r ,  t )  = - V ~ ( X  + r,  t )  G’(x, t )  G’(x + I, t )  (3.4) 

and for any correlation of scalars such as 

G ’ ( x , t ) v ( x + r )  = G ’ ( x + r , t ) g ( x , t )  (3.5) 

have been used. Since no modelling hypothesis seems evident a t  this stage, (3.2) will 
be transformed into Fourier space (Batchelor 1953). The Fourier transform is defined 

where integration is performed over a volume in correlation space. The scalar 
spectrum function T(k, t )  is related to F(k, t )  by 

f(E, t )  = k2 ?(k, t )  dQ = 4dc2?(jk, t ) ,  (3.7) i 
where dSZ is the solid angle and k = Ikl is the absolute value of the wavenumber. 
Fourier transformation of the triple-correlation term and the three source terms in 
(3.2) leads to the following equation for the scalar spectrum function: 

~- t ,  T(k, t ) + 4 7 ~ I C ~ [ 2 s 0 , S ~ ( k , t ) + 2 ~ ~ S ~ ( E , t ) + 2 ~ S ~ ( k , t ) ]  = 0. (3.8) 
at 

In  this equation T(k, t )  represents the spectral transfer of scalar fluctuations from all 
other wavenumbers by turbulence in a similar way as for a diffusive scalar (cf. Monin 
& Yaglom 1975, p. 138). 
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In order to proceed further in the present analysis, we extend the hypothesis about 
the existence of an equilibrium range to the scalar field under consideration. We 
furthermore expect that there exists an inertial subrange between the wavenumbers 
k, and k,, where r has an universal form and is quasi-stationary. Here k, is the 
inverse of the integral lengthscale l,, and k, the inverse of the Gibson scale, i.e. 

k, @ k Q k,, I, b k-l b L,. (3.9) 
To calculate the scalar spectrum, we will need to  adopt a closure hypothesis for the 
scalar transfer function T(k, t ) .  For simplicity we use the gradient transport 
assumption introduced by Pao (1965, 1968) for a diffusive scalar (cf. Monin & 
Yaglom 1975, p. 406), which we write as T(k, t )  = -aW(k ,  t ) / a k ,  where 

~ ( k ,  t )  = c,i&r(k, t ) .  (3.10) 

Here C, will turn out to correspond to the universal constant of the scalar spectrum. 
This form is dimensionally correct and its linearity in rrespects the dimension [g']/s 
of the triple correlation term in (3.6). Similar arguments may be used for the three 
source terms in (3.6) and their Fourier transforms in (3.8). The dimension of all thesc 
terms is [g2]/s. Closure of these terms therefore dictates that they should be linear in 
r. Since S ,  and S ,  involve gradients of G in correlation space, their Fourier transform 
should contain the wavenumber k. Finally, S, contains velocity fluctuation gradients 
of dimension s-l. It should therefore, like the transfer term, be proportional to €1. 
Dimensional analysis then suggests the following closure assumptions : 

(3.11) 

where cl, c2 and c, are empirical constants. 
It should be noted that since S,, S, and S, in (3.6) are nonlinear, their Fourier 

transforms should contain contributions not only from k, but from all other 
wavenumbers as well. Therefore, just as in the closure hypothesis for W ( k ,  t )  we have 
assumed that the interaction between largely separated wavenumbers is negligible 
compared to the local interaction. The resulting linear differential equation 

(3.12) 

can be solved exactly by the method of characteristics to yield 

T ( k , t )  = BH(()k-~e~p[-3c~(IJ~k)~]exp[-~~(L,k)~]exp(-c,Yk). (3.13) 

Here B is a constant and H ( 6 )  is an unknown function to be determined by initial 
conditions. 

According to the universal equilibrium theory postulated above, r should be 
independent of time in the inertial subrange. This suggests that H ( ( )  should approach 
a constant a t  k = k, ( t ) .  For simplicity of the subsequent calculations we will consider 
initial conditions where H ( ( )  is a Heaviside step function : 

1 for k 2 k, 
0 for k < k, (3.14) 

This corresponds to a small-wavenumber cutoff of the scalar spectrum at the integral 
lengthscale. For the present purpose, such a cutoff is no better and no worse than any 
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FIGURE 2. The scalar spectrum f(k) as a function of the non-dimensional wavenumber kL,, where 
L, is the Gibson length, 1, the integral length, L,  the Corrsin length and 2' the Markstein length. 

other assumption about the large-scale range of the spectrum, which cannot be 
assumed universal. 

The statistics of the turbulent flow field are therefore represented by 8 and lT, 
which for the homogeneous problem considered here, may both depend on time. The 
resulting scalar spectrum contains an inertial subrange between k, and the Gibson 
wavenumber k,, and three exponential ranges with different powers of the 
wavenumber, the first extending from k, to k, = Lcl with an exponential ki 
dependence, the second from k, to k, = L2-l with an exponential k% dependence and 
the last one from k, to infinity with a linear k-dependence within the exponent. The 
scalar spectrum is schematically plotted in figure 2. 

The dominating feature of the present analysis is the cutoff of the inertial subrange 
a t  the Gibson scale A,. This cutoff is due to the term 2s0,S1 in (3.2), which represents 
the two-point correlation between the scalar fluctuation G' and the fluctuation of the 
source term s 0 , d  in (2 .5 ) .  For a one-point correlation this term corresponds to the 
kinematic restoration introduced above. It has a similar effect in smoothing the 
scalar fluctuations as the scalar dissipation has for a diffusive scalar. It acts as a sink 
term in the equation for the scalar variance. This has led to the minus sign in the 
definition (2.10). For the constant-density analysis in this section we have the 
relation 

w = 2s0,S1(r = 0,  t ) .  (3.15) 

The term involving S,, on the other hand, is active only at  a smaller scale, the Corrsin 
scale L,. Since it represents the two-point correlation between scalar fluctuations and 
the curvature term in (1.18), in accounts for the smoothing of the cusps in the flame 
front. The one-point correlation was called scalar dissipation and can be related to 

x, = 2 9 9 ~ 2 ( r  = 0, t ) .  (3.16) 

Finally, the term involving S,, representing a two-point correlation between the 
scalar fluctuation and the flow divergence term in (1.18), may be related to the 
scalar-strain co-variance in the constant-density case by 

Zy = 2 .9S3(r  = 0, t ) .  (3.17) 

8 2  by 
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The question arises of whether the resulting exponential decay laws in the scalar 
spectrum function are: physically meaningful. There exists an analogy with the low- 
Prandtl-number analysis of Batchelor, Howells & Townsend (1959). In  the small- 
Prandtl-number case for a diffusive scalar, the inertial subrange of the energy 
spectrum extends down to the Kolmolgorov scale I ,  = (v3/e)f beyond that of the 
scalar spectrum, which is cutoff a t  the Corrsin scale. Since in this case 

L, = Pr-il,, k, = Prik,, k, = I%', (3.18) 

with Pr = pvc , /h ,  v being the kinematic viscosity, there is a range k, < k 4 k, 
where the scalar is strongly smoothed by diffusion. In the present case, the inertial 
subrange of the scalar field is cut off a t  the Gibson length, whereas the inertial 
subrange of the turbulent kinetic energy continues down to the Kolmogorov scale. 

Equation (3.12) may be integrated over k between k = k, and k = co. The spectral 
transfer term then vanishes and by comparison with the constant-density 
homogeneous turbulence analogue of (2.9) 

aG'2 - = - w - x u - c ,  
at 

one obtains the integrals 

G'2 = lk: Tdk, 

F m  

(3.19) 

(3.20) 

(3.21) 

(3.22) 

m 

Zu = c3 C ; l Y  lka k i r d k .  (3.23) 

When these integrals are written in terms of the variable 

x = 3c,(L, k); (3.24) 

and the solution (3.13) with assumption (3.14) is used, one obtains for G'2 and w 

(3.25) 

(3.26) 

where a = 2c2/(9c:), p = 2c3/(9c;). (3.27) 

In  order to obtain an estimate for the integration constant B, we consider the two 
limits 

2 4 L, 4 I,, (3.28) 

the second condition implying SOL 4 u' and xo + 0. Then, with Y / L G  + 0, the integral 
in (3.26) becomes unity and 

B = c,ws-:. (3.29) 
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FIQURE 3. The quotient ( a )  Ql, ( b )  QZ and (c) Q3 as functions of xo for different values of Y/L, .  
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In the inertial subrange the scalar spectrum function is then 

T(k) = C,we-ikf .  (3.30) 

By comparison with the spectrum function of a diffusive scalar in the inertial 
su brange 

r( k) = C, Xe-4k-t (3.31) 

it is seen that very similar behaviour is found here, the kinematic restoration w 
replacing the scalar dissipation x. It may therefore be assumed that C, and C, have 
the same numerical values. 

Eliminating B between (3.25) and (3.26), one obtains a relation between 6'2 and w 
that may be written as 

where 

(3.32) 

(3.33) 

(3.34) 

= [$:exp[ - x - G ( a + T ) ] d x ,  64 ax4 ,8x3 

I ,  = 2xi x - ~  exp [ - x - 
L, rz 24 + F)] dx. 

The quotient of integrals Q1 is plotted in figure 3(a). It was normalized such that it 
approaches unity in the limits xO+O and 64/LG+o. 

If we take e = c ~ u ' ~ / Z ~ ,  cd = 0.37 (Bray 1990), the turbulent kinetic energy 5 = $d2 
and C, = 1.2, which is the value preferred by Monin & Yaglom (1975) for the 
universal constant C, of the scalar spectrum, we obtain with Q, = 1 for (3.32) 

(3.35) 
e- 

w = c w = G 2 ,  
k 

where c,  = 1.62. This relates the kinematic restoration in a similar way to the 
turbulent timescale t ,  = E1.s and the scalar fluctuations @, as usually assumed for 
the scalar dissipation of a diffusive scalar. Also, using the same relations between e, 
u' and I,, xo may be expressed as 

where co = 3c;ic,. 
Dividing (3.22) and (3.23) by (3.21) one obtains the following relations : 

where 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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(3.40) 

where (3.41) 

(3.42) 

The quotients Qz and Q3 approach unity in the limit xo+O, 9 / L G + 0 .  They are 
plotted for various values of 2 / L G  in figures 3 ( b )  and 3 (c ) .  

4. Modelling of the source terms in the equation for G 
Among the three source terms to be modelled in (2.7) the first one 

P, = 90,a (4.1) 

is the most important. Nothing can be said about this term except that it should be 
related to w by dimensional arguments. The situation resembles that of modelling the 
turbulent viscosity in the equation for the mean velocity by dimensional analysis, 
once the equations for E and k have been closed. We expect P, to be independent of 
80, to leading order. This implies that as s0, + 0, should be inversely proportional to  
s0,. Following Kerstein, Ashurst & Williams (1988), @ represents the flame surface 
area per unit volume. The physical argument to justify the above assumption goes 
back as far as to  Damkohler (1940) who viewed the turbulent premixed flame as an 
ensemble of Bunsen flame cones. In  fact, when the burning velocity in an idealized 
Bunsen flame tends to  zero, the flame surface area increases as l/st since the mass 
flow rate m of premixed gas is always burnt, if there is a closed tip of the Bunsen cone. 
In  terms of the flamelet surface-to-volume ratio, the argument was recently 
substantiated by Bray (1990) who showed that when this ratio is expressed by the 
inverse of the lengthscale L,, L& is proportional to  8i/u‘. From dimensional 
analysis in terms of [g] it follows, since PI has the dimension [g]/s and o the 
dimension [g2]/s, that  P, should be proportional to &. If s t  is excluded in this 
dimensional analysis, only the turbulent time ,G/e is available to provide the correct 
time dimension of P,. A dimensionally correct formulation is therefore 

P, = +$, 
where a, is an empirical constant. 

It is useful to  go one step further and use here the equation for the variance (2.8). 
It is consistent with standard arguments in turbulence modelling to consider the 
limit where production equals the sum of the kinematic restoration, scalar dissipation 
and the scalar-strain term in the variance equation. Such arguments lead to 
Prandtl’s mixing-length theory in turbulent shear flows and to  the eddy break-up 
limit, where the mean reaction rate is proportional to  the scalar dissipation rate, in 
progress-variable descriptions of premixed turbulent combustion. Assuming a 
gradient flux approximation in the production term 
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where the turbulent diffusivity is 
D ,  = c1 L 2 / E  (4.4) 

and c1 is a constant, this limit yields 

2D,IVGI2 = w + xy + C,. (4.5) 

Let us a t  first consider the limit 9 + 0  so that the last two terms in (4.5) can be 
neglected. Then from (4.4) and (4.5) one obtains 

0 = 2c, PlVG(2/€. (4.6) 

Substituting this into (2.8), one obtains 

where b, = a1(3c,)i and the curvature and flow divergence terms have been expressed 
explicitly following (1.14). As noted above, v, and u‘ are conditioned velocities in the 
unburnt gas ahead of the flame. The first term on the right-hand side of (4.7) is 
exactly analogous to that in (1.18) except that s: is replaced by a constant times the 
turbulence intensity u‘. In  a homogeneous turbulent flow field the mean contour of 
a turbulent premixed flame could then be calculated in a way similar to a laminar 
flame with the laminar burning velocity replaced by u’. This is consistent with 
renormalization arguments (Yakhot 1988a). Since the equation for G is a 
Hamilton-Jacobi equation with a parabolic curvature term, its turbulent counter- 
part, again following renormalization arguments, should have the same character in 
order to be consistent with the boundary and initial conditions. This suggests that 
the terms in (4.7), which represent turbulent transport and Markstein diffusion, 
should be combined and modelled as a curvature term 

Here K is the mean curvature defined as in (1.15) but with G instead of G. The 
turbulent diffusion coefficient D& for the curvature term should be of the order of D, 
defined in (4.4). 

The last term in (4.7) is expected to be important in situations where the ratio of 
the Markstein length to the integral lengthscale is not very small. Since this is a 
higher-order term in the original equation it is difficult to develop a convincing model 
for the limit u’/sO,+ co considered here. We will leave the investigation of this term 
to analysis based on direct numerical simulation. 

5. Model calculations for steady normal and oblique flames in a constant- 
velocity flow with homogeneous non-decaying turbulence 

For plane and oblique flames such as a V-shaped flame the curvature term 
disappears. For simplicity, we will also neglect the last term, representing stretch due 
to flow divergence, in (4.7). It may be interesting to derive the solution for such 
steady-state flames in a constant-velocity flow by assuming all turbulent quantities 
to be constant. We consider a two-dimensional (x, y)-coordinate system with the flow 
velocity v in the y direction. For a plane one-dimensional flame normal to the flow 
w is equal to the burning turbulent velocity s ~ , ~ .  The solution of (4.7) is then G = cy 
where c is an arbitrary constant, leading to 

sT, = b, u‘. (5.1) 
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This is the classical result due to Damkohler (1940). Deviations from that limit occur 
a t  finite values of 2'11,. They are due to flame stretch by flow divergence resulting 
from the last term in (4.7). The turbulent flame brush thickness may be 
calculated from the variance equation. It may be defined as 

For the plane flame normal to  the flow the variance equation (2.8) becomes 

where (4.3), (3.35), (3.37) and (3.40) has been used. Also, a gradient flux 
approximation has been introduced for the turbulent transport terms in (2.8) : 

- Since the plane turbulent flame should be translationally invariant, the solution 
G 2  = const leads to  a balance of production and kinematic restoration : 

(5.5) 

where the solution G = cy has been introduced. The arbitrary constant c cancels in 
the definition of the flame brush thickness. Since the grouping D, is proportional 
to 1; the flame brush thickness IF, ,, ,,, of a steady turbulent flame normal to the flow 
is proportional to and of the order of the integral lengthscale I,. Relating the 
turbulent diffusivity D ,  to  the eddy viscosity vT = cd L 2 / E  as D, = vT/Sc, where Sc is 
a turbulent Schmidt number, one obtains 

The term in square brackets describes the influence of the Markstein length on the 
flame thickness. A Lewis number larger than one leading to a large Markstein 
number would increase this term and therefore reduce the flame brush thickness as 
compared to a case where the Lewis number is smaller than one and the Markstein 
number small. This is consistent with the picture that a large Markstein length would 
smooth the local flame front and annihilate cusps, thereby reducing the flame brush 
thickness in a turbulent flow. Such an effect was observed experimentally in 
hydrogen flames with different equivalence ratios by Wu et al. (1991). 

The V-shaped flame also to be considered is assumed to be attached to  the origin 
x = 0, y = yo, where x is the coordinate normal to the flow. The solution of (4.7) is 
now 

where c is again an arbitrary constant. The flame contour G = Go = 0 is obtained as 

(v2 -s;, .)+ 
Y = Y O +  1x1. 

ST, n 
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Since yo is arbitrary, the flame brush thickness must be independent of y. With (Vo(2 
being constant for this flame one may use (2.8) to write an equation for the flame 
brush thickness as 

(5.9) 

Assuming that the diffusivities DT,2 and D, are related to each other by 

D,  = di DT9 2 ,  (5.10) 

where d ,  is constant, one obtains with the boundary conditions lF,T = 0 at x = 0, 
dlF, Jdx = 0 for x --f cg the solution 

(5.11) 

For small values of x this shows a square root increase of the flame brush thickness 
for V-shaped flames, as it is approximately observed experimentally. It approaches 
the constant thickness of the normal flame when x times d, equals lF, ,, n.  If the flame 
angle is small, this would happen far downstream from the point of attachment 
where the assumption of constant properties of turbulence may no longer be valid. 
The flame brush thickness will then increase at the rate of the turbulence lengthscale 
in decaying turbulence. It should be noted that the solution (5.1 i ) ,  although formally 
correct, ceases to be valid for values of x smaller than the integral lengthscale. Close 
to the point of attachment only eddies of the order of x can interact with the flame 
front and displace it. This phenomenon is not accounted for by a description of 
turbulence based on integral length- and timescales only. 

Since the last term in (4.7) has not been modelled, no attempt will be made here 
to compare this theory with experimental data for 9,/aL. Extensive compilations of 
such data have been provided by Abdel-Gayed & Bradley (1981), Abdel-Gayed, Al- 
Kishali & Bradley (1984), Abdel-Gayed et al. (1985) and Abdel-Gayed, Bradley & 
Lawes (1987). While the general tendencies of these data do not seem to contradict 
the present results, the correspondence between parameters used in the experiments 
and those that appear in the present theory is not easily established. There are still 
large uncertainties about the adequate calculation of the Markstein length as well as 
the definition of the laminar flame thickness, and there are large errors in the 
experimental data concerning the integral lengthscale and even the turbulence 
intensity. 

Furthermore, in many experimental situations a steady turbulent flame is not 
established and transient effects may be important. The assumption of a 
homogeneous turbulent flow field whose turbulence properties can be represented by 
u' and 1, only is certainly also not always valid. These shortcomings, however, could 
be overcome if the appropriate unsteady and (or) non-homogeneous solution of (4.7) 
and (2.8) were compared with experimental data. 

6. Discussion and conclusions 
The present analysis tries to combine a systematic analysis of the properties of the 

scalar field G(x, t )  in isotropic turbulence with intuitive arguments from previous 
work on premixed turbulent combustion. A basic quantity in this context is the 
Gibson scale L,, which reappears naturally from dimensional analysis in the 
modelled equation for the scalar spectrum T(k, t ) .  The cutoff of the inertial subrange 
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at the Gibson scale due to kinematic restoration is fairly weak, but it is enhanced by 
the flame curvature effect at the Corrsin scale L, and by flame stretch effects a t  the 
Markstein length 9. 

The details of the analysis involve a number of empirical parameters, which result 
from the modelling of the nonlinear terms in (1.18). It would therefore be desirable 
to measure instantaneous flame contours and flame brush thicknesses and the 
velocity field simultaneously and to evaluate these constants. An evaluation of the 
source terms in the equation for G would be even more desirable, but probably even 
more difficult to perform. 

The authors is indebted to Paul Clavin, Forman Williams, Ken Bray, Keith 
Moffatt and in particular to his students M. Oberlack and D. Keller for the many 
intensive discussions and iterations on the subject. 
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